Coupling of efferent neuromodulatory neurons to rhythmical leg motor activity in the locust.
نویسندگان
چکیده
The spike activity of neuromodulatory dorsal unpaired median (DUM) neurons was analyzed during a pilocarpine-induced motor pattern in the locust. Paired intracellular recordings were made from these octopaminergic neurons during rhythmic activity in hindleg motor neurons evoked by applying pilocarpine to an isolated metathoracic ganglion. This motor pattern is characterized by two alternating phases: a levator phase, during which levator, flexor, and common inhibitor motor neurons spike, and a depressor phase, during which depressor and extensor motor neurons spike. Three different subpopulations of efferent DUM neurons could be distinguished during this rhythmical motor pattern according to their characteristic spike output. DUM 1 neurons, which in the intact animal do not innervate muscles involved in leg movements, showed no change apart from a general increase in spike frequency. DUM 3 and DUM 3,4 neurons produced the most variable activity but received frequent and sometimes pronounced hyperpolarizations that were often common to both recorded neurons. DUM 5 and DUM 3,4,5 neurons innervate muscles of the hindleg and showed rhythmical excitation leading to bursts of spikes during rhythmic activity of the motor neurons, which innervate these same muscles. Sometimes the motor output was coordinated across both sides of the ganglion so that there was alternating activity between levators of both sides. In these cases, the spikes of DUM 5 and DUM 3,4,5 neurons and the hyperpolarization of DUM 3 and DUM 3,4 neurons occurred at particular phases in the motor pattern. Our data demonstrate a central coupling of specific types of DUM neurons to a rhythmical motor pattern. Changes in the spike output of these particular efferent DUM neurons parallel changes in the motor output. The spike activity of DUM neurons thus may be controlled by the same circuits that determine the action of the motor neurons. Functional implications for real walking are discussed.
منابع مشابه
Interactions between segmental leg central pattern generators during fictive rhythms in the locust.
1. Rhythmic activity of leg motor neurons could be evoked in isolated locust thoracic ganglia as well as in preparations of two or three connected thoracic ganglia superfused with the muscarinic agonist pilocarpine. Rhythms were always more regular and reliably elicited in single isolated ganglia. When the ganglia were connected, rhythmic activity of leg motor neurons was not usually simultaneo...
متن کاملPatterned activation of unpaired median neurons during fictive crawling in manduca sexta larvae
The unpaired median neurons are common to the segmental ganglia of many insects. Although some of the functional consequences of their activation, among them the release of octopamine to modulate muscle contraction, have been described, less is understood about how and when these neurons are recruited during movement. The present study demonstrates that peripherally projecting unpaired median n...
متن کاملFlight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines
Walking and flying in locusts are exemplary rhythmical behaviors generated by central pattern generators (CPG) that are tuned in intact animals by phasic sensory inputs. Although these two behaviors are mutually exclusive and controlled by independent CPGs, leg movements during flight can be coupled to the flight rhythm. To investigate potential central coupling between the underlying CPGs, we ...
متن کاملA role for sensory inputs in the generation of the flight motor pattern.
Rhythmic behaviours such as breathing, walking or flying are now understood to be generated by the interplay between patterns of neural activity generated in the central nervous system and sensory inputs. Many of the pioneering insights into the generation and control of rhythmic motor patterns were made by studying the neural circuits generating the locust flight motor pattern. Malcolm Burrows...
متن کاملDistribution of intersegmental inputs to nonspiking local interneurons and motor neurons in the locust.
Intersegmental interneurons in a mesothoracic population that receive inputs from extero- and proprioceptors on a middle leg of a locust (Laurent, 1987a) make direct synaptic connections with nonspiking local interneurons and motor neurons controlling the movements of the ipsilateral hindleg. Of 25 direct connections that were established, 80% are excitatory, and 60% are made with nonspiking in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 79 1 شماره
صفحات -
تاریخ انتشار 1998